Combined Gas Law Worksheet

Assume that the amount of gas is constant in the following problems.

1. A helium-filled balloon at sea level has a volume of 2.1 L at 0.998 atm and $36^{\circ} \mathrm{C}$. If it is released and rises to an elevation at which the pressure is 0.900 atm and the temperature is $28^{\circ} \mathrm{C}$, what will be the new volume of the balloon?
2. At $0.00^{\circ} \mathrm{C}$ and 1.00 atm pressure, a sample of gas occupies 30.0 mL . If the temperature is increased to $30.00^{\circ} \mathrm{C}$ and the entire gas sample is transferred to a $20.0-\mathrm{mL}$ container, what will be the gas pressure inside the container?
3. A sample of air in a syringe exerts a pressure of 1.02 atm at a temperature of $22.0^{\circ} \mathrm{C}$. The syringe is placed in a boiling water bath at $100.0^{\circ} \mathrm{C}$. The pressure of the air is increased to 1.23 atm by pushing the plunger in, which reduces the volume to 0.224 mL . What was the original volume of the air?
4. An unopened, cold 2.00 L bottle of soda contains 46.0 mL of gas confined at a pressure of 1.30 atm at a temperature of $5.0^{\circ} \mathrm{C}$. If the bottle is dropped into a lake and sinks to a depth at which the pressure is 1.52 atm and the temperature is $2.09^{\circ} \mathrm{C}$, what will be the volume of gas in the bottle?
5. A sample of gas of unknown pressure occupies 0.766 L at a temperature of 298 K . The same sample of gas is then tested under known conditions and has a pressure of 32.6 kPa and occupies 0.644 L at 303 K . What was the original pressure of the gas?
